
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

1 Instructor: Daniel Llamocca

Notes - Unit 5

COMBINATIONAL CIRCUITS

MULTIPLEXERS (MUXS)
 This logic circuit selects one of many input signals and forwards the selected input to the output line.
 Boolean equations for MUX2-to-1, MUX4-to-1, MUX8-to-1:

 Normally, a multiplexer has 𝑁 = 2𝑛 inputs, one output, and a selector with 𝑛 bits.

 But, if a multiplexer has 𝑁 inputs, where 𝑁 is not a power of 2, the number of bits of the

selector is given by: ⌈𝑙𝑜𝑔2𝑁⌉.

MULTIPLEXERS WITH ENABLE
 An enable input provides us with an extra level of control. If the multiplexer is enabled, the circuit just works. If the

multiplexer is not enabled, no input is allowed into the output, and the multiplexer output becomes ‘0’ (if the output is
active-high) or ‘1’ (if the output if active-low).

 The enable input can be either active-high or active-low:

0

s

1

2

3

a

b

c

d

2

y

0

1

a

b

y

s

ys a b

0

0

1

1

0

1

0

1

s y

0

1

a

b

y = sa + sb

0

s

1

2

3

a

b

c

d

3

y

4

5

6

7

e

f

g

h

y = s1s0a s1s0b +

s1s0c + s1s0d

y = s2s1s0a + s2s1s0b + s2s1s0c + s2s1s0d +

s2s1s0e + s2s1s0f + s2s1s0g + s2s1s0h

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

s

1

N-1

n = log2N

y...

N

i
n
p
u
t
s

...

yE s1 s0

a

b

c

d

0

1 0 0

1 0 1

1 1 0

1 1 1

0 X X

0

s

1

2

3

a

b

c

d

2

y

E

yE s1 s0

a

b

c

d

0

0 0 0

0 0 1

0 1 0

0 1 1

1 X X

0

s

1

2

3

a

b

c

d

2

y

EACTIVE HIGH ENABLE ACTIVE LOW ENABLE

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

2 Instructor: Daniel Llamocca

BUS MULTIPLEXERS

 Usually we want input signals to contain more than one bit.

 In the figure, each input signal contains ‘m’ bits.

 This ‘bus multiplexer’ can be built by ‘m’ multiplexers, each

taking care of only one bit for all the inputs.

 We have ‘N’ inputs and therefore the selector has

𝑛 = ⌈𝑙𝑜𝑔2𝑁⌉ bits.

 Note that the selector is the same for all the multiplexers.

LOGIC CIRCUITS WITH MUXs
 Multiplexers can be used to implement Boolean Functions. The selector can be thought as the input variables, the input bits

are fixed values that are passed onto the output according to the selector.
 This multiplexor with fixed inputs implements a logic function. The functionality of this circuit is similar to that of a Look-

Up Table (LUT), which is a ROM-like circuit whose values are obtained by addressing them. FPGAs implement Boolean
functions using LUTs. In the example, a 3-to-1 LUT is an LUT with 3 inputs, i.e., it contains 23 = 8 addresses.

0

s

1

N-1

n = log2N

y...

N

i
n
p
u
t
s

...

m

m

m

m

I(0)

I(1)

I(N-1)

0

1

N-1

ym-1...

...

I(0)m-1

I(1)m-1

I(N-1)m-1

0

1

N-1

ym-2...

...

I(0)m-2

I(1)m-2

I(N-1)m-2

0

s

1

N-1

n = log2N

y0...

...

I(0)0

I(1)0

I(N-1)0

...

n

n

0

s = xyz

1

2

3

0

0

1

1

3

f

4

5

6

7

0

1

0

1

f

s2 s1 s0

0

0

1

1

0

1

0

1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

x y z

function

to be

implemented

s = xyz

0

3 f

3-to-1

Look-up Table

0

1

1

0

1

0

1

8-to-1 MUX

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

3 Instructor: Daniel Llamocca

DEMULTIPLEXERS
 A demultiplexer performs the opposite

operation of the multiplexers.

Application: Time Division Multiplexing (TDM)

 Digital Telephony: (4 KHz bandwidth)
 8000 samples per second, 8 samples per second.

This requires 64000 bits per second.
 In the figure, there are 4 telephone lines (4

signals). To take advantage of the communication
channel, only one signal is transmitted at a time.
We can do this since we are only required to
transmit samples of a particular signal at the rate

of 8000 samples per second (or 125 us between
samples, this is controlled by counters).

DECODERS
 Generally speaking, decoders are circuits that transform the inputs into outputs following a certain rule, provided that the

number of outputs is greater than or equal to the number of inputs.
 Here, we discuss standard decoders for which a specific input/output rule exists. These decoders have 𝑛 inputs and 2𝑛

outputs. We show examples of: a 2-to-4 decoder, 3-to-8 decoder, and a 2-to-4 decoder with enable. The output 𝑦𝑖 is
activated when the decimal value of the input 𝑤 is equal to 𝑖.

LOGIC CIRCUITS WITH DECODERS

 Decoders can be used to implement Boolean

functions. Note that each output is actually a
minterm.

 In the example, minterm 2 is activated when

xyz=010, here only y2 is 1. Also: y5 is activated
when xyz=101, y7 is activated when xyz=111.

s

2

x

0

s

1

a

b

x
a bs

0 y 0

1 0 y

a b c ds1 s0

0 0

0 1

1 0

1 1

y 0 0 0

0 y 0 0

0 0 y 0

0 0 0 y

0

1

2

3

a

b

c

d

E

w yn 2n

y7 y6 y5 y4 y3 y2 y1 y0w2 w1 w0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

DECODER
w y3 8

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

y3 y2 y1 y0w1 w0

0 0

0 1

1 0

1 1

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

DECODERw y2 4

y3 y2 y1 y0E w1 w0

1 0 0

1 0 1

1 1 0

1 1 1

0 X X

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 0

DECODER

with

enable

w y2 4

DECODER

f

0

0

1

1

0

1

0

1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

x y z

function

to be

implemented

f

y0
y1
y2
y3
y4
y5
y6
y7

w2

w1

w0

x

y

z

w2 w1 w0

2

0

1

2

3

0

1

2

3

(

(

(

(

(

(

(

(

COUNTER

2

COUNTER

0 1 2 3 0 1 2 3 ...

1/8000 s

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

4 Instructor: Daniel Llamocca

IMPLEMENTING DEMULTIPLEXORS WITH DECODERS
 By utilizing the enable input of a decoder as our input signal, we can effectively implement a demultiplexor using a decoder:

ENCODERS
 Generally speaking, encoders are circuits that transform the inputs into outputs following a certain rule, provided that the

number of outputs is lower than the number of inputs.
 Here, we discuss standard encoders for which a specific input/output rule exists. These encoders have 2𝑛 inputs and 𝑛

outputs. The operation is exactly the opposite as in the case of the decoder: whenever an input 𝑤𝑖 is activated, then the

index 𝑖 appears at the output 𝑦 (in binary form).

PRIORITY ENCODERS
 Standard encoder: we check whether an specific input is activated for the output to have a value.
 What happens when more than one input is activated? A solution is to create an extra output that is activated to indicate

than an unexpected condition has occurred.
 Another more interesting solution is to create a priority encoder, that is if more than one input is activated, then we only

pay attention to the input bit of the highest order. For example if 𝑤 = 1101, then we only pay attention to 𝑤(3) = 1, if 𝑤 =

0111, we only pay attention to 𝑤(2) = 1. This results in the following truth table for a 4-to-2 priority encoder:

 What happens when no input is activated? Here we run out of output bits in 𝑦 to represent this case. Thus, we include an

extra output 𝑧 that it is ‘0’ when no input activated, and ‘1’ otherwise.

0

s

1

2

3

a

b

c

d

2

x

a b c ds1 s0

0 0

0 1

1 0

1 1

y 0 0 0

0 y 0 0

0 0 y 0

0 0 0 y

y0

y1

y2

y3

w1

w0

E

s1

x

s0

y3 y2 y1 y0E w1 w0

1 0 0

1 0 1

1 1 0

1 1 1

0 X X

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 0

y3 y2 y1 y0w1 w0

0 0

0 1

1 0

1 1

0 0 0 E

0 0 E 0

0 E 0 0

E 0 0 0

a

b

c

d

ENCODER
w yn2n

w3 w2 w1 w0 y1 y0

0 0

0 1

1 0

1 1

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

ENCODER
w y2 4

PRIORITY

ENCODER

w3 y1

y0
w2

w1

w0
z

w1 w0

0 0

x x

1 x

0 1

0

x

x

x

0 0 1

w2 y0 zy1

0 0

1 1

1 0

0 1

0

1

1

1

0 0 1

0

1

0

0

0

w3

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

5 Instructor: Daniel Llamocca

a3

b3

a2

b2

a1

b1

a0

b0

A=B

a3

b3

a2

b2

e3

e2

e1

e0

e3

a1

b1

e3

e2

a0

b0

e3

e2

e1

A>B

A<B

AB

AB

A=B

A<B

A>B

COMPARATOR

A

B

4

4

COMPARATORS

 Comparator for Unsigned Numbers:

For 𝐴 = 𝑎3𝑎2𝑎1𝑎0, 𝐵 = 𝑏3𝑏2𝑏1𝑏0

 𝐴 > 𝐵 when:

𝑎3 = 1, 𝑏3 = 0

Or: 𝑎3 = 𝑏3 and 𝑎2 = 1, 𝑏2 = 0

Or: 𝑎3 = 𝑏3, 𝑎2 = 𝑏2 and 𝑎1 = 1, 𝑏1 = 0

Or: 𝑎3 = 𝑏3, 𝑎2 = 𝑏2, 𝑎1 = 𝑏1 and 𝑎0 = 1, 𝑏0 = 0

 Comparator for Signed Numbers:

 If both numbers are positive, we can use the unsigned comparator
 If both numbers are negative, we can also use unsigned comparator.

Example: 1000 < 1001 (-8 < -7). The closer the number is to zero, the larger the unsigned value is.
 If one number is positive and the other negative:

Example: 1000 < 0100 (-8 < 4). However, if we were to use the unsigned comparator, we would get 1000 > 0100. So,
we just need to invert the A>B bit (and the A<B bit too) in this case.

 For a 4-bit number in 2’s complement:
 If 𝑎3 ≠ 𝑏3, we need to invert the A>B and A<B bits of the unsigned comparator.

 If 𝑎3 = 𝑏3, we do not invert any bit.

𝑒3 = 1 when 𝑎3 = 𝑏3. 𝑒3 = 0 when 𝑎3 ≠ 𝑏3.

Then it follows that: (𝐴 < 𝐵)𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑒3̅(𝐴 < 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑒3(𝐴 < 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(𝐴 > 𝐵)𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑒3(𝐴 > 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

A=B

A<B

A>B

UNSIGNED

COMPARATOR

A

B

4

4

e3

A=B

A<B

A>B

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

6 Instructor: Daniel Llamocca

CODE CONVERTERS

BCD TO 7-SEGMENT DECODER
 It is a decoder because the number of outputs is greater than the number of inputs
 The truth table below assumes that the input and output are high-level.

GRAY TO BCD DECODER
 It is a decoder because the number of outputs is equal to the number of inputs.
 The following is the truth table for a 4-bit case:

BINARY TO GRAY DECODER
 It is a decoder because the number of outputs is equal to the number of inputs
 For small input sizes, we can use the truth table method. But for large input sizes, the following circuit is way more efficient:

b7 b6 b5 b4 b3 b2 b1 b0

g7 g6 g5 g4 g3 g2 g1 g0

0 0 0 0

0 0 0 1

0 0 1 1

0 0 1 0

0 1 1 0

0 1 1 1

0 1 0 1

0 1 0 0

1 1 0 0

1 1 0 1

1 1 1 1

1 1 1 0

1 0 1 0

1 0 1 1

1 0 0 1

1 0 0 0

g3g2g1g0 b3b2b1b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

a

b

c

d

e

f
g 9: 6:

4:

b3 b2 b1 b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

a b c d e f g

1 1 1 1 1 1 0

0 1 1 0 0 0 0

1 1 0 0 1 0 1

1 1 1 1 0 0 1

0 1 1 0 0 1 1

1 0 1 1 0 1 1

1 0 1 1 1 1 1

1 1 1 0 0 0 0

1 1 1 1 1 1 1

1 1 1 1 0 1 1

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

7: 2: 1:0:

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

7 Instructor: Daniel Llamocca

PARITY GENERATORS AND PARITY CHECKERS

 This is defined in the context of an error detection system with transmission and reception units.
 Data to be transmitted: 𝑋 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0 Transmitted stream: 𝑌 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0𝑝, p: parity bit

 Parity definition:
 Even Parity: 𝑌 has an even number of 1s pe=1, 0 otherwise

 Odd Parity: 𝑌 has an odd number of 1s po=1, 0 otherwise.

 This definition is problematic since p is not known. An alternative definition, based on the actual data X is:
 Even Parity: X has an odd number of bits pe = 1, 0 otherwise

 Odd Parity: X has an even number of 1s po = 1, 0 otherwise.

 Parity Generator: Circuit that generates the parity bit based on the actual data X
 Parity Checker: Circuit that verifies whether the stream Y has the correct parity.

Example:
 For the following error detection system, 𝑋 = 𝑥2𝑥1𝑥0, 𝑛 = 3. The parity generator and checker are always of the same parity:

 Even Parity Generator: It generates the parity bit pe.
 Even Parity Checker: It verifies that the received

stream Y has even parity. If so, rpe =0, otherwise rpe=1
(to signal an error)

 Odd Parity Generator: It generates the parity bit po.
 Odd Parity Checker: It verifies that the received stream

Y has odd parity. If so, rpo=0, otherwise rpo=1 (to signal
an error)

𝑝𝑒 = 𝑥2𝑥1𝑥0, 𝑟𝑝𝑒 = 𝑥2𝑥1𝑥0𝑝𝑒 𝑝𝑜 = 𝑥2𝑥1𝑥0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑟𝑝𝑜 = 𝑥2𝑥1𝑥0𝑝𝑜

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 In general for 𝑋 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0: 𝑝𝑒 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0. 𝑝𝑜 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 If the # of 1’s in an n-bit stream is odd, the n-bit input XOR gate will return 1, 0 otherwise.
 If the # of 1’s in an n-bit stream is even, the n-bit input XNOR gate will return 1, 0 otherwise.

 𝑟𝑝𝑒 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0𝑝𝑒. We expect the number of 1s in Y to be even, an XNOR will detect this. However, we want
𝑟𝑝𝑒 to be 1 when this does not happen (to signal an error). Hence, we use an 𝑛 + 1-bit input XOR gate.

 𝑟𝑝𝑜 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0𝑝𝑜
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. We expect the number of 1s in to be odd, an XOR will detect this. However, we want 𝑟𝑝𝑜

to be 1 when this does not happen (to signal an error). Hence, we use an 𝑛 + 1-bit input XNOR gate.

Even/Odd

Parity

Generator

Even/Odd

Parity

Checker

x2
x1
x0

rpopo

Transmitted bits

0

1

1

0

1

0

0

1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Even Parity

Generator

Even Parity

Checker

x2
x1
x0

pe
rpe

pe

rpe

x2
x1
x0

x2
x1
x0
po

x2 x1 x0 x2 x1 x0 pepe rpe

1

0

0

1

0

1

1

0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1

0

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Odd Parity

Generator

Odd Parity

Checker

po

rpo

x2
x1
x0

x2
x1
x0
po

x2 x1 x0 x2 x1 x0 popo rpo

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

8 Instructor: Daniel Llamocca

LOOK-UP TABLES (LUTS)
 The LUT contents are hardwired in this circuit. A 4-to-1 LUT can be seen as a ROM with 16 addresses, each address holding

one bit. It can also be seen as a multiplexor with fixed inputs.
 This is how FPGAs implement logic functions. A 4-to-1 LUT can implement any 4-input logic function.

LARGER LUTS
 A larger LUT can be built by building a circuit that allows for more ROM positions.
 Efficient method: A larger LUT can also be built by combining LUTs with multiplexers as shown in the figure. We can build a

NI-to-1 LUT with this method.
 We can build a NI-to-NO LUT using NO NI-to-1 LUTs. This can be seen as a ROM with 2𝑁𝐼 addresses, each address holding

𝑁𝑂 bits.

6

4 4 4 4

2
 M

S
B

s

4 LSBs

LUT5-to-1

LUT6-to-1

LUT
6 to 1

LUT
6 to 1

LUT
6 to 1

6

6

6

6

b0

b4

b5

b5 b1 b0

6

LUT 6-to-6

6 bits
6
4
 w

o
rd

s
 o

f
6
 b

it
s

LUT 6-to-6

LU
T

4

LU
T

4

LU
T

4

LU
T

4

MUX MUX

MUX

...

...

...

I
L
U
T

LI(4)

LI(5)

LI(3..0)

c
o
lu

m
n
 5

c
o
lu

m
n
 1

c
o
lu

m
n
 0 66

OLUT(i)

OLUT

ILUT

4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

data(0)

data(1)

data(2)

data(3)

data(4)

data(5)

data(6)

data(7)

data(8)

data(9)

data(10)

data(11)

data(12)

data(13)

data(14)

data(15)

LUT
4 to 1

ILUT(3)

ILUT(2)

ILUT(1)

ILUT(0)

OLUT ILUT
4 OLUT

4-to-1

Look-up Table

address

(Read-only memory

with 16 positions)

data(0)

data(1)

data(2)

data(3)

data(4)

data(5)

data(6)

data(7)

data(8)

data(9)

data(10)

data(11)

data(12)

data(13)

data(14)

data(15)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

9 Instructor: Daniel Llamocca

ARITHMETIC LOGIC UNIT (ALU)
 Two types of operation: Arithmetic and Logic (bit-wise). The sel(3..0) input selects the operation. sel(2..0) selects

the operation type within a specific unit. The arithmetic unit consist of adders and subtractors, while the Logic Unit consist
of 8-input logic gates.

BARREL SHIFTER

 Two types of operation: Arithmetic (mode=0) and Rotation (mode=1)
 Truth table for a 8-bit Barrel Shifter:

result[7..0] (output): It is shifted version of the input data[7..0]. sel[2..0]: number of bits to shift.

dir: It controls the shifting direction (dir=1: to the right, dir=0: to the left). When shifting to the right in the Arithmetic

Mode, we use sign extension so as properly account for both unsigned and signed input numbers.

Function

Transfer 'a'

Increment 'a'

Decrement 'a'

Transfer 'b'

Increment 'b'

Decrement 'b'

Add 'a' and 'b'

Subtract 'b' from 'a'

Complement 'a'

Complement 'b'

AND

OR

NAND

NOR

XOR

XNOR

ARITHMETIC

UNIT

LOGIC UNIT

a

b

sel

y

sel(3)

8

8

4

8

0

1

sel

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Operation

y <= a

y <= a + 1

y <= a - 1

y <= b

y <= b + 1

y <= b - 1

y <= a + b

y <= a - b

y <= NOT a

y <= NOT b

y <= a AND b

y <= a OR b

y <= a NAND b

y <= a NOR b

y <= a XOR b

y <= a XNOR b

Unit

A
R
I
T
H
M
E
T
I
C

L
O
G
I
C

0 1

0 1

result[7..0]

abcdefgh

bcdefgh0

cdefgh00

defgh000

efgh0000

fgh00000

gh000000

h0000000

aabcdefg

aaabcdef

aaaabcde

aaaaabcd

aaaaaabc

aaaaaaab

aaaaaaaa

dist[2..0]

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

data[7..0]

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

dir

X

0

0

0

0

0

0

0

1

1

1

1

1

1

1

mode = 0. ARITHMETIC MODE

result[7..0]

abcdefgh

bcdefgha

cdefghab

defghabc

efghabcd

fghabcde

ghabcdef

habcdefg

habcdefg

ghabcdef

fghabcde

efghabcd

defghabc

cdefghab

bcdefgha

dist[2..0]

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

data[7..0]

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

dir

X

0

0

0

0

0

0

0

1

1

1

1

1

1

1

mode = 1. ROTATION MODE

data

shifter to

left

0 1 2 3 4 5 6 7

dist
3

shifter to

right

0 1 2 3 4 5 6 7

rotate to

left

0 1 2 3 4 5 6 7

rotate to

right

0 1 2 3 4 5 6 7

dir
0 1

mode

8

result

8

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

10 Instructor: Daniel Llamocca

PRACTICE EXERCISES

1. Implement the following functions using i) decoders and ii) multiplexers:

 𝐹 = 𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅ + 𝑍𝑌
 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚0, 𝑚2, 𝑚6).
 𝐹(𝑋, 𝑌, 𝑍) = ∏(𝑀2, 𝑀4, 𝑀7)

 𝐹 = (𝑋 + 𝑌 + 𝑍)(𝑋 + 𝑌 + �̅�)
 𝐹 = 𝑋𝑌 + 𝑌𝑍 + 𝑋𝑍
 𝐹 = 𝑋𝑌𝑍

2. Using ONLY 4-to-1 MUXs, implement an 8-to-1 MUX.

3. Implement a 6-to-1 MUX using i) only NAND gates, and ii) only NOR gates.

4. Verify that the following circuit made of out of five 2-to-4 decoders with enable represents a 4-to-16 decoder with enable.

Tip: Create the truth table.

5. Using only 2-to-1 MUXs, implement the XOR and XNOR gates.

6. Using only a 4-to-1 MUX, implement the following functions.

 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚1, 𝑚3, 𝑚5, 𝑚7).
 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚1, 𝑚3, 𝑚5)

 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚3, 𝑚5, 𝑚7).
 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚5, 𝑚7).

7. Complete the following timing diagram:

y

P3

f

w

E

P2

P1

P0

10 11 01 01 11 01 00 10
3

2

1

0

DECODER

w

E

y3

2

PRIORITY
ENCODER

P3
x1

x0
P2

P1
z

y2

y1

y0

s1 s0

P0
f

Unknown

w2

E

w3

w0

w1

E

w0

w1

E

w0

w1

w0

w1

E

w0

w1

E

w0

w1

E

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y0

y1

y2

y3

y0

y1

y2

y3

y0

y1

y2

y3

y0

y1

y2

y3

y0

y1

y2

y3

