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Notes - Unit 5 
 

COMBINATIONAL CIRCUITS 

 

MULTIPLEXERS (MUXS) 
 This logic circuit selects one of many input signals and forwards the selected input to the output line.  
 Boolean equations for MUX2-to-1, MUX4-to-1, MUX8-to-1: 

 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 
 

 Normally, a multiplexer has 𝑁 = 2𝑛 inputs, one output, and a selector with 𝑛 bits. 

 
 But, if a multiplexer has 𝑁 inputs, where 𝑁 is not a power of 2, the number of bits of the 

selector is given by: ⌈𝑙𝑜𝑔2𝑁⌉. 
 
 

 
 
 
MULTIPLEXERS WITH ENABLE 
 An enable input provides us with an extra level of control. If the multiplexer is enabled, the circuit just works. If the 

multiplexer is not enabled, no input is allowed into the output, and the multiplexer output becomes ‘0’ (if the output is 
active-high) or ‘1’ (if the output if active-low). 

 The enable input can be either active-high or active-low: 
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BUS MULTIPLEXERS 
 
 Usually we want input signals to contain more than one bit.  
 
 In the figure, each input signal contains ‘m’ bits. 
 
 This ‘bus multiplexer’ can be built by ‘m’ multiplexers, each  

taking care of only one bit for all the inputs.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 We have ‘N’ inputs and therefore the selector has 

𝑛 = ⌈𝑙𝑜𝑔2𝑁⌉ bits. 

 Note that the selector is the same for all the multiplexers. 
 
 
 
 
 
 
 
 

 
 
 
 
 
LOGIC CIRCUITS WITH MUXs 
 Multiplexers can be used to implement Boolean Functions. The selector can be thought as the input variables, the input bits 

are fixed values that are passed onto the output according to the selector. 
 This multiplexor with fixed inputs implements a logic function. The functionality of this circuit is similar to that of a Look-

Up Table (LUT), which is a ROM-like circuit whose values are obtained by addressing them. FPGAs implement Boolean 
functions using LUTs. In the example, a 3-to-1 LUT is an LUT with 3 inputs, i.e., it contains 23 = 8 addresses. 
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DEMULTIPLEXERS 
 A demultiplexer performs the opposite 

operation of the multiplexers. 

 
 
 
 
 
Application: Time Division Multiplexing (TDM) 
 
 Digital Telephony: (4 KHz bandwidth) 
 8000 samples per second, 8 samples per second. 

This requires 64000 bits per second. 
 In the figure, there are 4 telephone lines (4 

signals). To take advantage of the communication 
channel, only one signal is transmitted at a time. 
We can do this since we are only required to 
transmit samples of a particular signal at the rate 

of 8000 samples per second (or 125 us between 
samples, this is controlled by counters). 

 
 

 

DECODERS 
 Generally speaking, decoders are circuits that transform the inputs into outputs following a certain rule, provided that the 

number of outputs is greater than or equal to the number of inputs. 
 Here, we discuss standard decoders for which a specific input/output rule exists. These decoders have 𝑛 inputs and 2𝑛 

outputs. We show examples of: a 2-to-4 decoder, 3-to-8 decoder, and a 2-to-4 decoder with enable. The output 𝑦𝑖 is 
activated when the decimal value of the input 𝑤 is equal to 𝑖. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LOGIC CIRCUITS WITH DECODERS 

 
 Decoders can be used to implement Boolean 

functions. Note that each output is actually a 
minterm. 

 
 In the example, minterm 2 is activated when 

xyz=010, here only y2 is 1. Also: y5 is activated 
when xyz=101, y7 is activated when xyz=111. 
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IMPLEMENTING DEMULTIPLEXORS WITH DECODERS 
 By utilizing the enable input of a decoder as our input signal, we can effectively implement a demultiplexor using a decoder: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
ENCODERS 
 Generally speaking, encoders are circuits that transform the inputs into outputs following a certain rule, provided that the 

number of outputs is lower than the number of inputs. 
 Here, we discuss standard encoders for which a specific input/output rule exists. These encoders have 2𝑛 inputs and 𝑛 

outputs. The operation is exactly the opposite as in the case of the decoder: whenever an input 𝑤𝑖 is activated, then the 

index 𝑖 appears at the output 𝑦 (in binary form). 

 
 
 
 
 
 
 
 
 
PRIORITY ENCODERS 
 Standard encoder: we check whether an specific input is activated for the output to have a value. 
 What happens when more than one input is activated? A solution is to create an extra output that is activated to indicate 

than an unexpected condition has occurred. 
 Another more interesting solution is to create a priority encoder, that is if more than one input is activated, then we only 

pay attention to the input bit of the highest order. For example if 𝑤 = 1101, then we only pay attention to 𝑤(3) = 1, if 𝑤 =

0111, we only pay attention to 𝑤(2) = 1. This results in the following truth table for a 4-to-2 priority encoder: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 What happens when no input is activated? Here we run out of output bits in 𝑦 to represent this case. Thus, we include an 

extra output 𝑧 that it is ‘0’ when no input activated, and ‘1’ otherwise. 
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 Comparator for Unsigned Numbers: 

 
For 𝐴 = 𝑎3𝑎2𝑎1𝑎0, 𝐵 = 𝑏3𝑏2𝑏1𝑏0 

 
 𝐴 > 𝐵 when: 

𝑎3 = 1, 𝑏3 = 0 

Or: 𝑎3 = 𝑏3 and 𝑎2 = 1, 𝑏2 = 0 

Or: 𝑎3 = 𝑏3, 𝑎2 = 𝑏2 and 𝑎1 = 1, 𝑏1 = 0 

Or: 𝑎3 = 𝑏3, 𝑎2 = 𝑏2, 𝑎1 = 𝑏1 and 𝑎0 = 1, 𝑏0 = 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Comparator for Signed Numbers: 

 If both numbers are positive, we can use the unsigned comparator 
 If both numbers are negative, we can also use unsigned comparator. 

Example: 1000 < 1001 (-8 < -7). The closer the number is to zero, the larger the unsigned value is. 
 If one number is positive and the other negative: 

Example: 1000 < 0100 (-8 < 4). However, if we were to use the unsigned comparator, we would get 1000 > 0100. So, 
we just need to invert the A>B bit (and the A<B bit too) in this case. 
 

 For a 4-bit number in 2’s complement: 
 If 𝑎3 ≠ 𝑏3, we need to invert the A>B and A<B bits of the unsigned comparator. 

 If 𝑎3 = 𝑏3, we do not invert any bit. 

 
𝑒3 = 1 when 𝑎3 = 𝑏3.  𝑒3 = 0 when 𝑎3 ≠ 𝑏3. 

Then it follows that: (𝐴 < 𝐵)𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑒3̅(𝐴 < 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑 =  𝑒3(𝐴 < 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(𝐴 > 𝐵)𝑠𝑖𝑔𝑛𝑒𝑑 =  𝑒3(𝐴 > 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
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CODE CONVERTERS 
 
BCD TO 7-SEGMENT DECODER 
 It is a decoder because the number of outputs is greater than the number of inputs 
 The truth table below assumes that the input and output are high-level. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
GRAY TO BCD DECODER 
 It is a decoder because the number of outputs is equal to the number of inputs. 
 The following is the truth table for a 4-bit case: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BINARY TO GRAY DECODER 
 It is a decoder because the number of outputs is equal to the number of inputs 
 For small input sizes, we can use the truth table method. But for large input sizes, the following circuit is way more efficient: 
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PARITY GENERATORS AND PARITY CHECKERS 

 This is defined in the context of an error detection system with transmission and reception units. 
 Data to be transmitted: 𝑋 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0 Transmitted stream: 𝑌 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0𝑝, p: parity bit 

 Parity definition: 
 Even Parity: 𝑌 has an even number of 1s  pe=1, 0 otherwise 

 Odd Parity: 𝑌 has an odd number of 1s  po=1, 0 otherwise. 

 This definition is problematic since p is not known. An alternative definition, based on the actual data X is: 
 Even Parity: X has an odd number of bits  pe = 1, 0 otherwise 

 Odd Parity: X has an even number of 1s  po = 1, 0 otherwise. 

 Parity Generator: Circuit that generates the parity bit based on the actual data X 
 Parity Checker: Circuit that verifies whether the stream Y has the correct parity. 
 
Example: 
 For the following error detection system, 𝑋 = 𝑥2𝑥1𝑥0, 𝑛 = 3. The parity generator and checker are always of the same parity:  

 Even Parity Generator: It generates the parity bit pe.  
 Even Parity Checker: It verifies that the received 

stream Y has even parity. If so, rpe =0, otherwise rpe=1 
(to signal an error) 

 Odd Parity Generator: It generates the parity bit po. 
 Odd Parity Checker: It verifies that the received stream 

Y has odd parity. If so, rpo=0, otherwise rpo=1 (to signal 
an error)  

𝑝𝑒 = 𝑥2𝑥1𝑥0,   𝑟𝑝𝑒 = 𝑥2𝑥1𝑥0𝑝𝑒 𝑝𝑜 = 𝑥2𝑥1𝑥0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,   𝑟𝑝𝑜 = 𝑥2𝑥1𝑥0𝑝𝑜

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 In general for 𝑋 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0: 𝑝𝑒 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0. 𝑝𝑜 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 If the # of 1’s in an n-bit stream is odd, the n-bit input XOR gate will return 1, 0 otherwise. 
 If the # of 1’s in an n-bit stream is even, the n-bit input XNOR gate will return 1, 0 otherwise. 

 𝑟𝑝𝑒 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0𝑝𝑒. We expect the number of 1s in Y to be even,  an XNOR will detect this. However, we want 
𝑟𝑝𝑒 to be 1 when this does not happen (to signal an error). Hence, we use an 𝑛 + 1-bit input XOR gate. 

 𝑟𝑝𝑜 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0𝑝𝑜
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. We expect the number of 1s in to be odd,  an XOR will detect this. However, we want 𝑟𝑝𝑜  

to be 1 when this does not happen (to signal an error). Hence, we use an 𝑛 + 1-bit input XNOR gate. 
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LOOK-UP TABLES (LUTS) 
 The LUT contents are hardwired in this circuit. A 4-to-1 LUT can be seen as a ROM with 16 addresses, each address holding 

one bit. It can also be seen as a multiplexor with fixed inputs. 
 This is how FPGAs implement logic functions. A 4-to-1 LUT can implement any 4-input logic function. 
 
LARGER LUTS  
 A larger LUT can be built by building a circuit that allows for more ROM positions. 
 Efficient method: A larger LUT can also be built by combining LUTs with multiplexers as shown in the figure. We can build a 

NI-to-1 LUT with this method. 
 We can build a NI-to-NO LUT using NO NI-to-1 LUTs. This can be seen as a ROM with 2𝑁𝐼 addresses, each address holding 

𝑁𝑂 bits. 
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LUT 6-to-6

6 bits
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LUT 6-to-6

LU
T

4

LU
T

4

LU
T

4

LU
T

4

MUX MUX

MUX

...

...

...

I
L
U
T

LI(4)

LI(5)

LI(3..0)

c
o
lu

m
n
 5

c
o
lu

m
n
 1

c
o
lu

m
n
 0 66

OLUT(i)

OLUT

ILUT

4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

data(0)

data(1)

data(2)

data(3)

data(4)

data(5)

data(6)

data(7)

data(8)

data(9)

data(10)

data(11)

data(12)

data(13)

data(14)

data(15)

LUT
4 to 1

ILUT(3)

ILUT(2)

ILUT(1)

ILUT(0)

OLUT ILUT
4 OLUT

4-to-1

Look-up Table

address

(Read-only memory

with 16 positions)

data(0)

data(1)

data(2)

data(3)

data(4)

data(5)

data(6)

data(7)

data(8)

data(9)

data(10)

data(11)

data(12)

data(13)

data(14)

data(15)



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-378: Digital Logic and Microprocessor Design  Winter 2015 

 

 

9 Instructor: Daniel Llamocca 

ARITHMETIC LOGIC UNIT (ALU) 
 Two types of operation: Arithmetic and Logic (bit-wise). The sel(3..0) input selects the operation. sel(2..0) selects 

the operation type within a specific unit. The arithmetic unit consist of adders and subtractors, while the Logic Unit consist 
of 8-input logic gates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BARREL SHIFTER 

 Two types of operation: Arithmetic (mode=0) and Rotation  (mode=1) 
 Truth table for a 8-bit Barrel Shifter:  

result[7..0] (output): It is shifted version of the input data[7..0]. sel[2..0]: number of bits to shift. 

dir: It controls the shifting direction (dir=1: to the right, dir=0: to the left). When shifting to the right in the Arithmetic 

Mode, we use sign extension so as properly account for both unsigned and signed input numbers. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Function

Transfer 'a'

Increment 'a'

Decrement 'a'

Transfer 'b'

Increment 'b'

Decrement 'b'

Add 'a' and 'b'

Subtract 'b' from 'a'

Complement 'a'

Complement 'b'

AND

OR

NAND

NOR

XOR

XNOR

ARITHMETIC 

UNIT

LOGIC UNIT

a

b

sel

y

sel(3)

8

8

4

8

0

1

sel

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0 

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Operation

y <= a

y <= a + 1

y <= a - 1

y <= b

y <= b + 1

y <= b - 1

y <= a + b

y <= a - b

y <= NOT a

y <= NOT b

y <= a AND b

y <= a OR b

y <= a NAND b

y <= a NOR b

y <= a XOR b

y <= a XNOR b

Unit

A
R
I
T
H
M
E
T
I
C

L
O
G
I
C

0                  1

0                                     1

result[7..0]

abcdefgh

bcdefgh0

cdefgh00

defgh000

efgh0000

fgh00000

gh000000

h0000000

aabcdefg

aaabcdef

aaaabcde

aaaaabcd

aaaaaabc

aaaaaaab

aaaaaaaa

dist[2..0]

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

data[7..0]

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

dir

X

0

0

0

0

0

0

0

1

1

1

1

1

1

1

mode = 0. ARITHMETIC MODE

result[7..0]

abcdefgh

bcdefgha

cdefghab

defghabc

efghabcd

fghabcde

ghabcdef

habcdefg

habcdefg

ghabcdef

fghabcde

efghabcd

defghabc

cdefghab

bcdefgha

dist[2..0]

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

data[7..0]

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

dir

X

0

0

0

0

0

0

0

1

1

1

1

1

1

1

mode = 1. ROTATION MODE

data

shifter to

left

0 1 2 3 4 5 6 7

dist
3

shifter to

right

0 1 2 3 4 5 6 7

rotate to

left

0 1 2 3 4 5 6 7

rotate to

right

0 1 2 3 4 5 6 7

dir
0                  1

mode

8

result

8
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PRACTICE EXERCISES 
 

1. Implement the following functions using i) decoders and ii) multiplexers: 

 𝐹 = 𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅ + 𝑍𝑌 
 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚0, 𝑚2, 𝑚6). 
 𝐹(𝑋, 𝑌, 𝑍) = ∏(𝑀2, 𝑀4, 𝑀7) 

 𝐹 = (𝑋 + 𝑌 + 𝑍)(𝑋 + 𝑌 + �̅�) 
 𝐹 = 𝑋𝑌 + 𝑌𝑍 + 𝑋𝑍 
 𝐹 = 𝑋𝑌𝑍 

 
2. Using ONLY 4-to-1 MUXs, implement an 8-to-1 MUX. 
 
3. Implement a 6-to-1 MUX using i) only NAND gates, and ii) only NOR gates. 
 
4. Verify that the following circuit made of out of five 2-to-4 decoders with enable represents a 4-to-16 decoder with enable. 

Tip: Create the truth table. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
5. Using only 2-to-1 MUXs, implement the XOR and XNOR gates. 
  
6. Using only a 4-to-1 MUX, implement the following functions.  

 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚1, 𝑚3, 𝑚5, 𝑚7). 
 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚1, 𝑚3, 𝑚5) 

 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚3, 𝑚5, 𝑚7). 
 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚5, 𝑚7). 

 
7. Complete the following timing diagram: 
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